Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 448: 139104, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547711

RESUMO

Legume proteins can be induced to form amyloid-like fibrils upon heating at low pH, with the exact conditions greatly impacting the fibril characteristics. The protein extraction method may also impact the resulting fibrils, although this effect has not been carefully examined. Here, the fibrillization of lentil protein prepared using various extraction methods and the corresponding fibril morphology were characterized. It was found that an acidic, rather than alkaline, protein extraction method was better suited for producing homogeneous, long, and straight fibrils from lentil proteins. During alkaline extraction, co-extracted phenolic compounds bound proteins through covalent and non-covalent interactions, contributing to the formation of heterogeneous, curly, and tangled fibrils. Recombination of isolated phenolics and proteins (from acidic extracts) at alkaline pH resulted in a distinct morphology, implicating a role for polyphenol oxidase also in modifying proteins during alkaline extraction. These results help disentangle the complex factors affecting legume protein fibrillization.


Assuntos
Lens (Planta) , Fenóis , Proteínas de Plantas , Lens (Planta)/química , Fenóis/química , Fenóis/isolamento & purificação , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Concentração de Íons de Hidrogênio , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Amiloide/química , Fracionamento Químico/métodos
2.
Int J Biol Macromol ; 255: 128111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979744

RESUMO

African swine fever (ASF), caused by the African swine fever virus (ASFV), is now widespread in many countries and severely affects the commercial rearing of swine. Rapid and early diagnosis is crucial for the prevention of ASF. ASFV mature virions comprise the inner envelope protein, p22, making it an excellent candidate for the serological diagnosis and surveillance of ASF. In this study, the prokaryotic-expressed p22 recombinant protein was prepared and purified for immunization in mice. Four monoclonal antibodies (mAbs) were identified using hybridoma cell fusion, clone purification, and immunological assays. The epitopes of mAbs 14G1 and 22D8 were further defined by alanine-scanning mutagenesis. Our results showed that amino acids C39, K40, V41, D42, C45, G48, E49, and C51 directly bound to 14G1, while the key amino acid epitope for 22D8 included K161, Y162, G163, D165, H166, I167, and I168. Homologous and structural analysis revealed that these sites were highly conserved across Asian and European ASFV strains, and the amino acids identified were located on the surface of p22. Thus, our study contributes to a better understanding of the antigenicity of the ASFV p22 protein, and the results could facilitate the prevention and control of ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Camundongos , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Mapeamento de Epitopos , Anticorpos Monoclonais , Anticorpos Antivirais , Epitopos , Aminoácidos
3.
J Virol ; 97(9): e0056923, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37607059

RESUMO

Proinflammatory factors play important roles in the pathogenesis of African swine fever virus (ASFV), which is the causative agent of African swine fever (ASF), a highly contagious and severe hemorrhagic disease. Efforts in the prevention and treatment of ASF have been severely hindered by knowledge gaps in viral proteins responsible for modulating host antiviral responses. In this study, we identified the I10L protein (pI10L) of ASFV as a potential inhibitor of the TNF-α- and IL-1ß-triggered NF-κB signaling pathway, the most canonical and important part of host inflammatory responses. The ectopically expressed pI10L remarkably suppressed the activation of NF-κB signaling in HEK293T and PK-15 cells. The ASFV mutant lacking the I10L gene (ASFVΔI10L) induced higher levels of proinflammatory cytokines production in primary porcine alveolar macrophages (PAMs) compared with its parental ASFV HLJ/2018 strain (ASFVWT). Mechanistic studies suggest that pI10L inhibits IKKß phosphorylation by reducing the K63-linked ubiquitination of NEMO, which is necessary for the activation of IKKß. Morever, pI10L interacts with the kinase domain of IKKß through its N-terminus, and consequently blocks the association of IKKß with its substrates IκBα and p65, leading to reduced phosphorylation. In addition, the nuclear translocation efficiency of p65 was also altered by pI10L. Further biochemical evidence supported that the amino acids 1-102 on pI10L were essential for the pI10L-mediated suppression of the NF-κB signaling pathway. The present study clarifies the immunosuppressive activity of pI10L, and provides novel insights into the understanding of ASFV pathobiology and the development of vaccines against ASF. IMPORTANCE African swine fever (ASF), caused by the African swine fever virus (ASFV), is now widespread in many countries and severely affects the commercial rearing of swine. To date, few safe and effective vaccines or antiviral strategies have been marketed due to large gaps in knowledge regarding ASFV pathobiology and immune evasion mechanisms. In this study, we deciphered the important role of the ASFV-encoded I10L protein in the TNF-α-/IL-1ß-triggered NF-κB signaling pathway. This study provides novel insights into the pathogenesis of ASFV and thus contributes to the development of vaccines against ASF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...